Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(6): 2670-2677, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224288

RESUMO

Chlorhexidine dodecyl sulfate (CHX-DS) was synthesized and characterized via single-crystal X-ray diffraction (SC-XRD), 1H nuclear magnetic resonance (NMR) spectroscopy, 1H nuclear Overhauser effect spectroscopy (NOESY), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The solid-state structure, comprising a 1 : 2 stoichiometric ratio of chlorhexidine cations [C22H30Cl2N10]2+ to dodecyl sulfate anions [C12H25SO4]-, is the first report of chlorhexidine isolated with a surfactant. CHX-DS exhibits broad-spectrum antibacterial activity and demonstrates superior efficacy for reducing bacteria-generated volatile sulfur compounds (VSCs) as compared to chlorhexidine gluconate (CHG). The minimum inhibitory concentrations (MICs) of CHX-DS were 7.5, 2.5, 2.5, and 10 µM for S. enterica, E. coli, S. aureus, and S. mutans, respectively. Furthermore, MIC assays for E. coli and S. mutans demonstrate that CHX-DS and CHX exhibit a statistically significant efficacy enhancement in 2.5 µM treatment as compared to CHG. CHX-DS was incorporated into SBA-15, a mesoporous silica nanoparticle (MSN) framework, and its release was qualitatively measured via UV-vis in aqueous media, which suggests its potential as an advanced functional material for drug delivery applications.


Assuntos
Clorexidina , Escherichia coli , Dodecilsulfato de Sódio , Clorexidina/farmacologia , Clorexidina/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Tensoativos/farmacologia
2.
Dalton Trans ; 52(47): 17834-17845, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37974478

RESUMO

Controlling the ratio of metals in bimetallic organic frameworks (MOFs) can not only alter the structures but also tailor the properties of MOFs. Herein, we report a series of electrocatalytically active CoxNiy-based bimetallic MOFs that are synthesized with the 3,5-pyridinedicarboxylic acid (3,5-H2pdc) ligand (where x : y = 20 : 1, 15 : 1, 10 : 1, 5 : 1, 1 : 1, and 1 : 20) and a facile, scalable, low temperature synthetic route. The materials have one-dimensional (1D), rod-like microstructures with different aspect ratios. While they all electrocatalyze the oxygen evolution reaction (OER) in alkaline solution (1 M KOH), their electrocatalytic performances vary substantially depending on their compositions. The CoxNiy-MOF with an optimal ratio of x : y = 15 : 1 (Co15Ni1-MOF) electrocatalyzes the OER with the highest maximum current density (92.2 mA cm-2 at 1.75 V vs. RHE) and the smallest overpotential (384 mV vs. RHE at 10 mA cm-2) in a 1 M KOH solution. It is also stable under constant current application during the electrocatalytic OER. This work demonstrates the application of bimetallic MOFs that are synthesized following a simple, low temperature synthetic route for the OER and their tailorable electrocatalytic properties for the OER by varying the ratio of two metals and the synthetic conditions used to produce them.

3.
Molecules ; 28(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37764344

RESUMO

Environmental pollution remains one of the most challenging problems facing society worldwide. Much of the problem has been caused by human activities and increased usage of various useful chemical agents that inadvertently find their way into the environment. Triclosan (TCS) and related phenolic compounds and derivatives belong to one class of such chemical agents. In this work, we provide a mini review of these emerging pollutants and an outlook on the state-of-the-art in nanostructured adsorbents and photocatalysts, especially nanostructured materials, that are being developed to address the problems associated with these environmental pollutants worldwide. Of note, the unique properties, structures, and compositions of mesoporous nanomaterials for the removal and decontamination of phenolic compounds and derivatives are discussed. These materials have a great ability to scavenge, adsorb, and even photocatalyze the decomposition of these compounds to mitigate/prevent their possible harmful effects on the environment. By designing and synthesizing them using silica and titania, which are easier to produce, effective adsorbents and photocatalysts that can mitigate the problems caused by TCS and its related phenolic derivatives in the environment could be fabricated. These topics, along with the authors' remarks, are also discussed in this review.

4.
Chempluschem ; 88(5): e202300104, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36872295

RESUMO

The development of durable and efficient electrocatalysts composed of low-cost, earth-abundant metals for the oxygen evolution reaction (OER) is crucial for industrial-scale water splitting to produce green hydrogen on a large scale. Transition metal borates are considered good candidate electrocatalysts for OER due to their low cost, ease of synthesis, and good catalytic activity. In this work, we demonstrate that the incorporation of an oxophilic main group metal, bismuth (Bi), into cobalt borates produces highly effective electrocatalysts for OER. We also show that the catalytic activity of Bi-doped cobalt borates can be improved further by pyrolyzing them in an argon atmosphere. During pyrolysis, the Bi crystallites formed in the materials melt, transform into amorphous phases, interact better with the Co or B atoms in there, and form more synergistic catalytic sites for OER. By varying the amount of Bi as well as the pyrolysis temperature, different Bi-doped cobalt borates are synthesized, and the most optimal OER electrocatalyst is identified. Among them, the one with Co : Bi ratio of 9 : 1 and that is pyrolyzed at 450 °C exhibits the best catalytic activity, driving the reaction at a current density of 10 mA cm-2 with the lowest overpotential (318 mV) and a Tafel slope of 37 mV dec-1 .

5.
ACS Appl Mater Interfaces ; 15(14): 17459-17469, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975176

RESUMO

The development of materials that can more efficiently administer antimicrobial agents in a controlled manner is urgently needed due to the rise in microbial resistance to traditional antibiotics. While new classes of antibiotics are developed and put into widespread usage, existing, inexpensive compounds can be repurposed to fight bacterial infections. Here, we present the synthesis of amine-functionalized SBA-15 mesoporous silica nanomaterials with physisorbed rafoxanide (RFX), a commonly used salicylanilide anthelmintic, and anchored Cu(II) ions that exhibit enhanced antimicrobial efficacy against the pathogenic bacterium Staphylococcus aureus. The synthesized nanomaterials are structurally characterized by a combination of physicochemical, thermal, and optical methods. Additionally, release studies are carried out in vitro to determine the effects of pH and the synthetic sequence used to produce the materials on Cu(II) ion release. Our results indicate that SBA-15 mesoporous silica nanocarriers loaded with Cu(II) and RFX exhibit 10 times as much bactericidal action against wild-type S. aureus as the nanocarrier loaded with only RFX. Furthermore, the synthetic sequence used to produce the nanomaterials could significantly affect (enhance) their bactericidal efficacy.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Rafoxanida/farmacologia , Cobre/farmacologia , Cobre/química , Testes de Sensibilidade Microbiana , Antibacterianos/química , Anti-Helmínticos/farmacologia , Dióxido de Silício/química , Anti-Infecciosos/farmacologia
6.
PLoS One ; 17(6): e0267166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737662

RESUMO

Micro-anatomical reentry has been identified as a potential driver of atrial fibrillation (AF). In this paper, we introduce a novel computational method which aims to identify which atrial regions are most susceptible to micro-reentry. The approach, which considers the structural basis for micro-reentry only, is based on the premise that the accumulation of electrically insulating interstitial fibrosis can be modelled by simulating percolation-like phenomena on spatial networks. Our results suggest that at high coupling, where micro-reentry is rare, the micro-reentrant substrate is highly clustered in areas where the atrial walls are thin and have convex wall morphology, likely facilitating localised treatment via ablation. However, as transverse connections between fibres are removed, mimicking the accumulation of interstitial fibrosis, the substrate becomes less spatially clustered, and the bias to forming in thin, convex regions of the atria is reduced, possibly restricting the efficacy of localised ablation. Comparing our algorithm on image-based models with and without atrial fibre structure, we find that strong longitudinal fibre coupling can suppress the micro-reentrant substrate, whereas regions with disordered fibre orientations have an enhanced risk of micro-reentry. With further development, these methods may be useful for modelling the temporal development of the fibrotic substrate on an individualised basis.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Fibrose , Átrios do Coração , Humanos
7.
Small Methods ; 6(7): e2200519, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35680607

RESUMO

A hierarchically ordered porous carbon electrocatalyst with exclusively surface-anchored cobalt species, dubbed Co@HOPC, is synthesized from polyaniline and cobalt-functionalized silica microparticles templates, and its high electrocatalytic activity for the oxygen evolution reaction (OER) is demonstrated. The material requires a small potential (320 mV) to drive the reaction with a current density of 10 mA cm-2 and a small Tafel slope of 31.2 mV dec-1 . Moreover, Co@HOPC shows better catalytic activity for OER than in situ cobalt-doped and surface cobalt-loaded hierarchically ordered porous carbon materials synthesized by traditional methods. This is due to the abundant surface cobalt species present in Co@HOPC and the material's good electrical conductivity. This work provides a new strategy to utilize functionalized silica microparticles as templates to synthesize hierarchically ordered porous carbon materials with metal-rich surfaces and efficient electrocatalytic activities.

8.
ACS Appl Mater Interfaces ; 14(18): 20919-20929, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35500300

RESUMO

Conductive polymer hydrogels have large surface areas and electrical conductivities. Their properties can be further tailored by functionalizing them with metals and nonmetals. However, the potential applications of metal-functionalized hydrogels for electrocatalysis have rarely been investigated. In this work, we report the synthesis of transition-metal-functionalized polyaniline-phytic acid (PANI-PA) hydrogels that show efficient electrocatalytic activities for the oxygen evolution reaction (OER). Among the many transition metals studied, Fe is accommodated by the hydrogel the most due to the favorable affinity of the PA groups in the hydrogel for Fe. Meanwhile, those containing both Fe and Co are found to be the most effective electrocatalysts for OER. The most optimized such hydrogel, NF@Hgel-Fe0.3Co0.1, which is made using a solution that has a 3:1 ratio of Fe and Co, needs an overpotential of only 280 mV to catalyze OER in 1 M KOH solution with a current density of 10 mV cm-2. Furthermore, these metal-functionalized PANI-PA hydrogels can easily be loaded on the nickel foam or carbon cloth via a simple soak-and-dry method to generate free-standing electrodes. Overall, this work demonstrates a facile synthesis and fabrication of sustainable and efficient OER electrocatalysts and electrodes that are composed of easily processable hydrogels functionalized with earth-abundant transition metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...